Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study.
نویسندگان
چکیده
The formation and growth of maghemite (γ-Fe2O3) nanoparticles from ammonium iron(III) citrate solutions (C(6)O(7)H(6) · xFe(3+) · yNH(4)) in hydrothermal synthesis conditions have been studied by in situ total scattering. The local structure of the precursor in solution is similar to that of the crystalline coordination polymer [Fe(H(2)cit(H2O)](n), where corner-sharing [FeO(6)] octahedra are linked by citrate. As hydrothermal treatment of the solution is initiated, clusters of edge-sharing [FeO(6)] units form (with extent of the structural order <5 Å). Tetrahedrally coordinated iron subsequently appears, and as the synthesis continues, the clusters slowly assemble into crystalline maghemite, giving rise to clear Bragg peaks after 90 s at 320 °C. The primary transformation from amorphous clusters to nanocrystallites takes place by condensation of the clusters along the corner-sharing tetrahedral iron units. The crystallization process is related to large changes in the local structure as the interatomic distances in the clusters change dramatically with cluster growth. The local atomic structure is size dependent, and particles smaller than 6 nm are highly disordered. The final crystallite size (<10 nm) is dependent on both synthesis temperature and precursor concentration.
منابع مشابه
Investigation of the Synthesis of Chitosan Coated Iron Oxide Nanoparticles under Different Experimental Conditions
Iron oxide (Fe3O4) nanoparticles with average sizes of 10 nm were synthesized by a chemical coprecipitation method in the presence of chitosan. Chitosan as a natural polymer which can be extracted from crustaceans was used in the synthesis process in order to achieve more dispersed nanoparticles. Also, chitosan was used to obtain functionalized magnetic nanoparticles for using in different area...
متن کاملUnderstanding the formation and evolution of ceria nanoparticles under hydrothermal conditions.
Supercritical growth: The formation and evolution of ceria nanoparticles during hydrothermal synthesis was investigated by in situ total scattering and powder diffraction. The nucleation of pristine crystalline ceria nanoparticles originated from previously unknown cerium dimer complexes. The nanoparticle growth was highly accelerated under supercritical conditions.
متن کاملThe relation between iron-formation and low temperature hydrothermal alteration in an Archean volcanic environment
The uppermost section of the Hunter Mine group (HMG) (2728 Ma), a bimodal volcanic complex in the Abitibi greenstone belt, contains both oxide and carbonate facies banded iron-formation (BIF). This paper explores the relationship between volcanic activity and the development of the two types of iron-formation. The oxide facies, represented by chert-jasper-magnetite iron-formation is widespread ...
متن کاملGeological setting of iron oxide-apatite deposits in theBafq district, central Iran with an emphasis on mineralogical,petrographic, and geochemical study of the Sechahun deposit
The objective of this research is to determine all processes in the magmatic evolution and related hydrothermal activities that created the volcanic rocks and associated ore-forming systems of the Bafq mining district. Several iron oxide-apatite (IOA) deposits were investigated in this area with a focus on the Sechahun ore deposit. The Bafq mining district is well known for hosting significan...
متن کاملORIGIN OF CHOGHART IRON OXIDE DEPOSIT, BAFQ MINING DISTRICT, CENTRAL IRAN: NEW ISOTOPIC AND GEOCHEMICAL EVIDENCE
The origin of the Proterozoic Choghart iron oxide deposit in the Bafq mining district of Central Iran has been the subject of a long-standing dispute. Some authors believe that it was formed from magma, while others suggest metasomatic replacement of preexisting rocks. The present study on the basis of new oxygen isotope, REE and geochemical data concludes that neither of these two hypotheses c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2014